Biostatistics I: Hypothesis testing

Continuous data: Two-sample (independent) tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

e.andrinopoulou@erasmusmc.nl

♥@erandrinopoulou

- Two-sample t-test (independent samples)
- Two-sample Wilcoxon rank sum test (independent samples)
- Examples

Assumptions

- The dependent variables must be continuous
- The observations are independent
- The dependent variables are approximately normally distributed
- > The dependent variables do not contain any outliers

Scenario

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

Connection with linear regression

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where x_i indicates whether a patient was in group 1 or in group 2

 $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

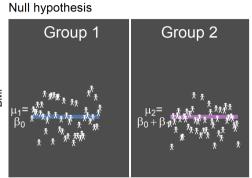
Scenario

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

Alternatively

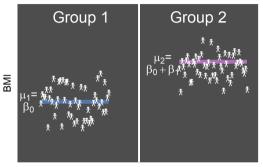
 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

Two-sample t-test (independent samples): Theory



$$\mu_1 = \mu_2$$
$$\beta_1 = 0$$

Alternative hypothesis



 $\mu_1 \neq \mu_2$ $\beta_1 \neq 0$

Two-sample t-test (independent samples): Theory

Test statistic

If the variances of the two groups are equal we use the t-statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{sd^2(x)}{n_1} + \frac{sd^2(x)}{n_2}}}, \text{ where}$$
$$sd^2(x) = \frac{\sum (x_1 - \bar{x}_1)^2 + \sum (x_2 - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

If the variances of the two groups being compared are *not* equal we use the Welch t-statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}}}$$

- Sample mean of group 1, 2: \bar{x}_1, \bar{x}_2
- Standard deviation of group 1, 2: $sd(x_1)$, $sd(x_2)$
- Number of subjects in group 1, 2: n_1 , n_2

Two-sample t-test (independent samples): Theory

Sampling distribution

- t-distribution with:
 - If the variance of the two groups are equal: $df = n_1 + n_2 2$
 - ► If the variance of the two groups are *not* equal: $df = \frac{\left[\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}\right]^2}{\frac{\left[sd^2(x_1)/n_1\right]^2}{n_1} + \frac{\left[sd^2(x_2)/n_2\right]^2}{n_2}}$
- Critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

• Compare test statistic (t) with the critical values or the p-value with α

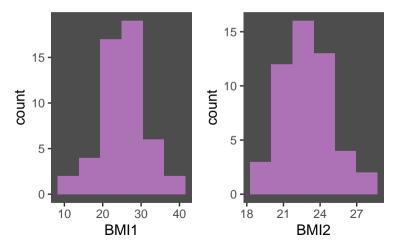
Scenario

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

Hypothesis

 $H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2$

Collect and visualize data



Hypothesis

Test statistic

Let's assume that:

- Sample mean of group 1: $\bar{x}_1 = 24$
- Sample mean of group 2: \bar{x}_2 = 23
- Standard deviation of group 1: $sd(x_1) = 6$
- Standard deviation of group 2: $sd(x_2) = 2$
- Number of subjects in group 1: $n_1 = 50$
- Number of subjects in group 2: $n_2 = 50$

We first test homogeneity of variances:

- $H_0: \frac{\text{variance}_1}{\text{variance}_2} = 1$ $\mu_1: \text{variance}_1 \neq 1$
- $H_1: \frac{variance_1}{variance_2} \neq 1$

F statistic: *highest variance* = 9

DF: $n_1 - 1 = 50 - 1 = 49$, $n_2 - 1 = 50 - 1 = 49$

If α = 0.05 and two-tailed test, get critical value in R: qf(p = 0.05, df1 = 49, df2 = 49, lower.tail = FALSE) [1] 1.607289

 $rac{highest variance}{lowest variance}$ = 9 $> 1.61 \Rightarrow H_0$ is rejected

Test statistic

Not equal variances:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}}} = \frac{24 - 23}{\sqrt{\frac{36}{50} + \frac{4}{50}}} = 1.12$$

Degrees of freedom

$$df = \frac{\left[\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}\right]^2}{\frac{[sd^2(x_1)/n_1]^2}{n_1 - 1} + \frac{[sd^2(x_2)/n_2]^2}{n_2 - 1}} = \frac{\left(\frac{36}{50} + \frac{4}{50}\right)^2}{\frac{(36/50)^2}{49} + \frac{(4/50)^2}{49}} = 59.76$$

Type I error

 α = 0.05

Critical values

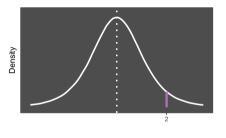
Using R we get the critical values from the t-distribution: critical value_{$\alpha/2$} = critical value_{0.05/2}

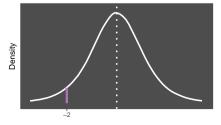
```
qt(p = 0.05/2, 59.76, lower.tail = FALSE)
```

```
[1] 2.000463
-critical value<sub>\alpha/2</sub> = -critical value<sub>0.05/2</sub>
```

qt(p = 0.05/2, 59.76, lower.tail = TRUE)

[1] -2.000463





Draw conclusions

We reject the H_0 if:

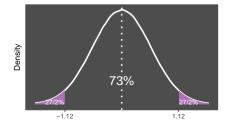
► $t > critical value_{\alpha/2}$ or $t < - critical value_{\alpha/2}$

We have $1.12 < 2 \Rightarrow$ we do not reject the H_0

Using R we obtain the p-value from the *t*-distribution:

2 * pt(q = 1.12, df = 59.76, lower.tail = FALSE)

[1] 0.2671949



Two-sample Wilcoxon rank sum test: Theory

Assumptions

- Population distribution is symmetric
- The observations are independent of one another

Scenario

Is the distribution of the score values of the students in group 1 different from the distribution of the score values of the students in group 2?

Connection with linear regression

 $rank(y_i) = \beta_0 + \beta_1 x_i + \epsilon_i$, where x_i indicates whether a patient was in group 1 or in group 2 $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

Alternatively

 H_0 : the distributions of both populations are equal H_1 : the distributions are not equal

Two-sample Wilcoxon rank sum test: Theory

Test statistic

- Calculate the ranks for the two groups $(r_1 \text{ and } r_2)$
- Obtain the sum of those ranks $R_1 = \sum r_1$, $R_2 = \sum r_2$
- Calculate $U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} R_1$ and $U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} R_2$
- The test statistic (U) is the minimum of U_1 and U_2

If **one-tailed**: use either U_1 or U_2 for the test statistic (U) depending on the direction of the alternative hypothesis

Two-sample Wilcoxon rank sum test: Theory

Sampling distribution

For large sample size: we can use the normal approximation, that is, *U* is normally distributed

 $\mu_U = \frac{n_1 n_2}{2}$ $\sigma_U = \sqrt{\frac{n_1 n_2 (n_2 + n_1 + 1)}{12}}$ If there are ties in ranks, we should use:

$$\sigma_{u} = \sqrt{\frac{n_{1}n_{2}}{12}} \left[(n+1) - \sum_{i=1}^{K} \frac{t_{i}^{2} - t_{i}}{n(n-1)} \right]$$

where $n = n_1 + n_2$ and t_i is the number of subjects sharing the rank *i*. *K* is the number of ranks

$$Z = \frac{|min(U_1, U_2) - \mu_U| - 1/2}{\sigma_U}$$

Sampling distribution

For small sample size: we can use the exact distribution

Get critical values and p-value

Type I error

• Normally $\alpha = 0.05$

Draw conclusions

 \blacktriangleright Compare test statistic with the critical values or the p-value with α

Scenario

Is the distribution of the score values of the students in group 1 different from the distribution of the score values of the students in group 2?

Hypothesis

 H_0 : the distributions of both populations are equal H_1 : the distributions are not equal

Two-sample Wilcoxon rank sum test: Application

Collect and visualize data

variable	value	rank
Х	9.75508	1
Х	11.10491	4
Х	10.69730	3
У	14.71926	5
У	15.79611	6
У	10.15486	2

Test statistic

$$R_{1} = 1 + 4 + 3 = 8$$

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R_{1} = 7$$

$$R_{2} = 5 + 6 + 2 = 13$$

$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2} = 2$$

Type I error $\alpha = 0.05$

Hypothesis

 H_0 : the distributions of both populations are equal H_1 : the distributions are not equal

Critical values

Using R we get the critical values from the exact distribution: low critical value_{$\alpha/2$} = low critical value_{0.05/2}

qwilcox(p = 0.05/2, m = 3, n = 3, lower.tail = TRUE)

[1] 0

high critical value_{$\alpha/2$} = high critical value_{0.05/2}

qwilcox(p = 0.05/2, m = 3, n = 3, lower.tail = FALSE)

[1] 9

Draw conclusions

We reject the H_0 if:

▶ U_1 > high critical value_{$\alpha/2$} and U_2 < low critical value_{$\alpha/2$}

We have 7 < 9 and $2 > 0 \Rightarrow$ we do *not* reject the H_0

Two-sample Wilcoxon rank sum test: Application

Draw conclusions

Using R we obtain the p-value from the exact distribution:

2 * pwilcox(q = 2, m = 3, n = 3, lower.tail = TRUE)

[1] 0.4

or

$$p - value = 2 * Pr(U \ge 7) = 2 * (1 - Pr(U < 7))$$
:

2 * (1 - pwilcox(q = 7 - 1, m = 3, n = 3, lower.tail = TRUE))

[1] 0.4

2 * pwilcox(q = 7 - 1, m = 3, n = 3, lower.tail = FALSE)

[1] 0.4